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Abstract: Let C be a nonempty closed convex subset of a real Hilbert space H, {T}}3°, : C' — C an infinite
family of nonexpansive mappings with the nonempty set of common fixed points (-, Fiz(T;) and S : C' — C
a nonexpansive mapping. In this paper, we introduce an explicit algorithm with strong convergence for finding the
minimum norm solution of the following hierarchical fixed point problem

o0 o0
Find o* € (1] Fiz(T}) and (I — S)z*,2* —2) <0, Vo € () Fiz(Ty).
k=1 k=1

Key—Words: Hierarchical fixed point, Iterative algorithm, Variational inequality, Minimum norm, Strong conver-
gence

1 Introduction Problem (1) is very important in the area of op-
timization and related fields, such as signal process-
ing and image reconstruction (see [1-4]). Recently,
for solving (1), Mainge and Moudafi [5] introduced a
hybrid iterative method and Lu, Xu and Yin [6] con-
sidered a regularization method. Related work in the

Let H be a real Hilbert space with inner product (-, -)
and norm || - ||, respectively. Let C' be a nonempty
closed convex subset of H. Let f : C' — H be a
a—contraction, where « € [0, 1); namely,

field can be found in [7-14] and the references therein.

If@) = fW)ll < allz = yll.V 2,y € C. It is needed to find a minimum norm solution in many

A mapping T' : C' — C'is said to be nonexpansive, if problems. A typical example is the least-squares so-

lution to the constrained linear inverse problem (see

Tz — Tyl < ||z —y|,V z,y € C. [15]). Therefore, it is an interesting problem to find

the minimum norm solution of (1). Yao et al. [13]

We use Fliz(T') to denote the set of fixed points of 7', introduced an implicit algorithm and an explicit algo-
namely, Fiz(T) = {x € C : Tz = x}. The metric rithm as following:

projection from H onto C' is the mapping Po : H —

C which assigns to each point z € H the unique point s = Pols(l = 1)Swsy + (1 = 5)Twsy],

Pox € C satisfying the property where s,t € (0,1), Pc is the metric projection from
HtoC.

r — Pozx|| = inf |z —y| =: d(z,C).

I | yeC | yll ( ) Tnt1 = PolM(l—ap) Sz, + (1=X) T2y, n >0,
Let S,T : C — C be two nonexpansive mappings. where {An} and {Oén} are two sequences in (0,1) and
Now, we consider the following problem of finding hi- Fc is the metric projection from H onto C'. Under
erarchically a fixed point of a nonexpansive mapping some mild assumptions, Yao et al. [13] proved that
T with respect to another mapping S, namely finding {Zs1} and. {zn} converge strongly to the minimum
a point z* with the property norm solution z* of (1).

In order to deal with some problems involving
the common fixed points of infinite family of non-
expansive mappings, W -mapping is often used. Let

x* € Fiz(T) such that

(I —S)x*,z* —x) <0, Vo € Fiz(T). S
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{Ti}72, : C — C be an infinite family of nonex-
pansive mappings and let {{;}7°, be a real number
sequence such that 0 < &, < 1 for every & € N. For
any n € N, we define a mapping W, of C into itself
as follows:

Un,n+1 = I;
Un,n = gnTnUn,n+1 + (1 - fn)la
Un,n—l = fn—lTn—lUn,n + (1 - €7’L—1)Ia

Unk = &Ik Up 1 + (1 — &)1,
Unji—1=E-1Th—1Upi + (1 — &—1)1,

Unga =&ToUp3+ (1 — &)1,
Wy =Up1=6T1Up2+ (1 -&)I,

Such W,, is called the W-mapping generated by
{T3}72, and {&,}52,, see[14,16-18].

Now we consider the following hierarchical fixed
point problem which includes (1) as a special case.

Find z* € (2, Fiz(T}) such that
(I=9S)z*, 2" —x) <0, Vo€ ey Fix(Ty),

where {T}}?°, : C — C be an infinite family of
nonexpansive mappings with (,~; Fiz(T}) # (. In
[14], Yao, et al. considered an explicit algorithm
which generated a iterative sequence {x,,} by

anSxy + (1 — ayn) Wy Pel(1
—Bn)an), n 20,

Tn+1 =

3)

where {a,,} and {5,} are two sequences in (0,1),
W, : C — C'is the W-mapping. Under some mild
assumptions, they proved that {x,,} generated by (3)
converges strongly to the minimum norm solution of
hierarchical fixed point problem (2).

Since W-mapping contains many composite op-
erations of {7}}, it is complicated and needs large
computational work. In this paper, we will intro-
duce a new mapping to take the place of WW-mapping
for solving hierarchical fixed point problem (2). Let
{Ti}32, : € — C be an infinite family of nonex-
pansive mappings. The new mapping is defined as
follows:

(n=1,2,...), 4)

e

n
Ln:ZwTk
k=1""

where wy, > 0 with Y 7w =1, S, = > 5 Wk.
Inspired and motivated by the work in the field,
we introduce two explicit algorithms with L,, for find-
ing the minimum norm solution of hierarchical fixed
point problem (2). Under certain appropriate condi-
tions, we prove that the two proposed algorithms have
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strong convergence. Because L, used in our algo-
rithms doesn’t contain many composite operations of
{T}.} which are included in W-mapping, our intro-
duced algorithms are more brief and need less com-
putational work.

We will use the notations:

e — for weak convergence and — for strong con-
vergence.

® wy(ry) = {z : 3 »,, — x} denotes the weak
w-limit set of {z,, }.

2 Preliminaries

In this section, some lemmas are given which are im-
portant to prove our main results.

Lemma 1 [19] Let C be a nonempty closed convex
subset of a real Hilbert space H. LetT : C — C be a
nonexpansive mapping with Fix(T) # 0. If {x,} is
a sequence in C weakly converging to x and if {(I —
T)xy} converges strongly to y, then (I —T)x = y; in
particular, if y = 0, then x € Fix(T).

Lemma 2 [I13] Given x € H and z € C.

(1) That z = Pcx if and only if there holds the rela-
tion:

(x—2z,y—2) <0 for all yeC.
(2) That z = Pcx if and only if there holds the rela-
tion:

o= zlI> < lz = yl* = lly — 21> for all y € C.
(3) There holds the relation:
(Pox — Poy,x —y) > ||Pex — Peyl|? for all y € H.

Lemma 3 [20] Assume {a,} is a sequence of non-
negative real numbers such that
An+41 < (]— - 'Yn)an + '7n5n) n > 07

where {v,} is a sequence in (0,1) and {0,} is a se-
quence in R such that

(i) 20 Yn = OO,

oo
(ii) lim sup 0, < 0or > |yndn| < oo

n— 00 n=0

Then lim,, o a,, = 0.
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Lemma 4 [2]] Let C be a nonempty closed convex
subset of a real Hilbert space H. Let {T};}7°, : C —
C' be an infinite family of nonexpansive mappings.
Suppose (o Fliz(T},) is nonempty. Let {wy}72,
be a sequence in (0,1) with Y 7> wy, = 1. Then a
mapping L on C defined by Lx = Y p2 ; wpTxx for
x € C is well defined, nonexpansive and Fix(L)
Nrey Fiz(Ty) holds.

Lemma 5 [22] Let H be a real Hilbert space, {T}, :
k € N} be a sequence of nonexpansive mappings
on H with (2, Fiz(Ty) # 0, and {wy} be a se-
quence of positive numbers with > ;> | wy = 1. Let
L = 22021 wka, Lm = 27];;”:1 %Tk, and Sm =
>y wk. Then Ly, uniformly converges to L in each
bounded subset S of H.

3 Main result

In this section, we first introduce an explicit scheme
for finding the minimum norm solution of hierarchi-
cal fixed point problem (2). More precisely, starting
with an arbitrary initial guess zp € C, we define a
sequence {z,, } recursively by

PolBn(1 — ay)Sxy
+(1 - ﬁn)LnfEnL

Tnt+1
n>0, ®)

where {a, } and {3, } are two real sequences in (0,1),
S : C — (C'is a nonexpansive mapping, L,, : C' —
C is the nonexpansive mapping defined by (4), P¢ :
H — (' is the metric projection.

Remark 6 We note that the well-known Mann algo-
rithm xp41 = Bnxn + (1 — B)Txy, has only weak
convergence, please see [23-29] for the related works.
This implies that the algorithm

Tnt1 = BnStn + (1 — Bn)Lpzyn, n>0 (6)

has only weak convergence. In order to obtain strong
convergence, some modifications are needed. We
modify the algorithm (6) by adding the factor 1 —
ap(Where oy, — 0). However, we note that (1—au, )y,
may not be in C. Hence, the projection Po is used
in order to guarantee that the sequence {x,,} is well-
defined.

Next, we will show the strong convergence of the
algorithm (5). As a matter of fact, we introduce a gen-
eral algorithm which includes the algorithm (5) as a
special case. For any z¢p € C, define the sequence
{x,} iteratively by

Tn+1 = PC[ﬁn(O‘nf(xn) + (1 - O‘n)sxn) (7
+(1 - Bn)Lnxn]a n 2 07
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where f : C — H is a a—contraction. It is clear
that if we take f = 0, then (7) reduces to (5). For the
strong convergence of the algorithm (5) and (7), we
have the following theorem. Throughout, we use €2 to
denote the set of solution to (2) and assume that 2 is
nonempty.

Theorem 7 Let C' be a nonempty bounded closed
convex subset of a real Hilbert space H. Let f
C — H be a a-contraction with o € [0,1), S :
C — C a nonexpansive mapping, and {T}}72, :
C — C an infinite family of nonexpansive mapping
with (2, Fie(T) # 0. Let Ly, = >0 25T,
Sn = Y pqwk and wi > 0 with Y 2w, = 1.
Suppose the following conditions are satisfied

(CI) lim a, = lim %2f=nabfut — iy Bo -
n—00 n—00 anfy n—oo 4n
lim —L (2 L) = lim -2, =0;

57 Br—1 n—oo anﬁ% -

n—oo @nfn
0

(C2) Z anﬁn = 00y
n=0

(C3) There exists some constant vy > 0 such that ||x —
Lyx|| > yDist(z, (=, Fiz(T})), where

inf

z—1|.
yeMRe, Fiz(Ty) El

Dist(x, [ Fiz(Ty)) =

n=1

Then the sequence {x,} generated by (7) converges
strongly to x* € (o, Fiz(T}) which is the unique
solution of the variational inequality:

z*eQ, ((I-flz*,x—2a") >0,

In particular, if we take f = 0, then the sequence
{x,} generated by (5) converges strongly to x* €
iy Fiz(Ty) which is the minimum norm solution
of hierarchical fixed point problem (2).

Ve € Q. (8)

Proof: We will use six steps to prove the result.

Step 1. We show that lim,, o ||zp+1 — zp|| — 0.
Forn > 0, set

Yn = Bn (anf(zn) + (1 — an)Szn) + (1= Bn) Lnay.

Then it holds that

Yn — Yn—1
Bulanf(xn) + (1 — an)Szy) + (1 = Bn) Ly
—Bn-1(an-1f(Tn-1) + (1 — an—1)Srn_1)
7(1 - ﬁnfl)Lnfllinfl

anBulf(@n) = f(@n-1)] + Bn(l — an)(Szp
—S2n-1) + (nfn — an—18n-1)[f(zn-1)
—Szp_1]+ (1 = Bn)(Lpzy — Lpzp—_1)
+(1 - Bn—l)(LnfUn—l - Ln—lxn—l) + (ﬁn
—Bn—1)(Sxp_1 — Lpxp_1).
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It follows that

[Zn+1 — @
HPC'yn - PC'yn—lH < ||yn
n Bl f(2n) = fzn-1)||
+6n(1 — an)|| Sz — S|
+onBn — an—1Bp-1ll[ f(zn-1) —
+(1 - 5n)HLnxn - LnxanH

+(1 = Brn—1)|| Ln®n—1 — Lp—1Tpn—1]]
+|Bn - ﬁn71’||555n71
Bl Tn — wn—IH
+6n(1 — an)|zn — Tn-||

+onmBn — an—1Bp-1ll[ f(#n-1) — Sp_1]|
+(1 = Bn-) | Lnn—1 — Ln—12n-1]|
+1Bn = Bn-1lllSzn—1 — Lpzn-1|

[1— (1 —a)anBa]llzn — zn-l

+anBn — an—1Bn-1|l| f(Tn-1) = Szn_1|
+(1 = Brn—1)|| Lnxn—1 — Lp—1Tpn—1]]
+|Bn - IBn71H|S$n*1

We observe that

- yn—l”

IN

Szp_1]|

— Lpzn_1 ||

IN

IN

— Lnajn,1||.

HLnxn—l - Ln—lxn—lH
n w n—1 w
k k
Y S
| Sh " Shn—

WnW

Txn 1+ZS S 1karn 1”
n—

-1

WnWk

wr,
< — T, %
< gl +13 g i)
w Tl W
< Tz + R Tyen
— SnH nTn 1” ZSnSnflu kTn 1”
o Bl S s [T
= w1 Sn 1 w1
< Muwn,

where M is a constant such that

- Wy 9

sup {([[f(zn)ll + [[Szal)),
1<k<n

(ISzn-1 = Lyzn-1l]), |2n — zp-1ll}-
Therefore,

[Zn+1 — zn |

<[ -1 -a)anbullzn — 2l

+[|anﬁn - Oénflﬁnfﬂ + (1 - anl)wn
"H/Bn - /Bn—IHM
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< [1_(1 - O‘)anﬁn}”xn_xn 1||
ﬂnﬁnM (‘anﬁn;i%:ﬁnfl‘ +anﬁn |57;ngz 1|>
)
Thus, from (Cl), we have limsup,, H00(06‘7‘;7/;,” +

|anﬁn—aanﬂnlﬁn 1| + |18" B~ 1|) = 0 HCHCC applylng

Lemma 3 to (9), we Conclude immediately that

T [l241 — 0] = 0. (10)
Step 2. We prove that wy(z,) C Fiz(L) =
Niey Fiz(Ty), where L =572 | wiTj.

By (7), we get immediately

|Zn+1 — LnTnl|
= |[Peyn — PoLn@n| < ||yn — Lnzn ||
= |IBulanf(zn) + (1 — an)Sxy) (11)
+(1 — Bn)Lpxn — Lpxy||
S ﬂn”anf(mn) + (1 - an)an - Ln'rnH
— 0(n— o0).
Notice that
|Zn — Lanll < ||#n — Znga |l + [[Tn+1 — Lnzn||
+||Lpzy, — Ly
Thus, from (10), (11) and Lemma 5, we deduce
lim ||z, — Lx,|| = 0. (12)
n—oo

Since the sequence {z,} is bounded, there exists a
subsequence {z,, } of {x,,} which converges weakly
to some ¥ € H. Therefore, we have = €
Fix(L) = (g2, Fiz(T}) by (12) and Lemma 1.
Hence, wy,(xy,) C Fix(L) = ey Fiz(Ty) .
Step 3. We claim that w,,(x,,) C Q.

By (9), we get

[ Znt1 — n]

Br
< [1—=(1—a)apfh]
M‘an/@n -

— Tn—1|
Bn
an—lﬂn—1| + wp + ’ﬁn

|zn

- 5n—1‘

Bn
— Tjn—1]
anl

Tn—1]|

+[1 = (1 — @) ) (”x"_ﬁ

_”xn_xn—lH) M(’anﬁn
ﬁn—l *
Wn + ‘Bn - Bn—1|>

B

= [1-(1-a)a,ba] ln

- O‘n—lﬁn—l’

B

_l’_
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< [1-(1- a)anﬁn]w
/Bn—l
+aanM<‘an6n - an—lfn—1| + wp,
anfB;
—0Bn—1 1 1 1
N A )]
anﬁn anﬁn Bn /Bn—l
Thus, by virtue of condition (Cl), we have
limy, o0 ('a"ﬁ "*O‘;L;ég”‘l””" Lo el e g’j{l' +

1 ‘i 1 ’
anfBn ! Bn Bn—1
above last inequality, we conclude immediately that

) = 0. Hence, applying Lemma 3 to

iy [ntt =2l o
n—00 ﬁn

(13)

Rewriting (7) as

Tnyr = Poyn — Yo + Bulanf(zn)
+(1 — ap)Sxy) + (1 — Bn) Lpzy.
‘We obtain
Tp —Tn+l = Yn — Pcyn + O‘nﬁn(I - f)xn

+Bn(1 - an)(I - S)xn
+(1 = Bn)(I — Lyp)xy.

Set z,, = % for all n > 0. That is

Zn = yn_/@-PCyn +an(I — fa,
+(1—an)(I — S)xy,
+(1;)f”)(1 — Ly)xn.

Pick up u € (p2, Fiz(T}), then we have

(zn, Ty — u)
1
= 7<yn — Poyn, Poyn—1 — U>
Bn
+an((I — flan, zy, — u)

+(1 — an){(I — S)xpn, xHn —u)

1- n
+ b ((I = Lyp)xy,x, — u)
Bn
1
= F<yn_PCyn7P0yn_u>

1
+F<yn - Pcyn’ PCyn—l - Pcyn>
n

+an((I = f)an, on — u)

+(1 — an){(( = S)u, z, — u)

+(1 = ap)((I = S)xn — (I — S)u, z, — u)
1- /Bn

5,

((I = Lp)xy, — (I — Lyp)u, zy, — u).
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Using the property of the projection (Lemma 2), we
have

(Yn — Pcyn, Poyn — u) > 0.

Using monotonicity of I — S and I — L,,, we derive
the that

(I —=8)xy, — I —Su,xy —u) >0,
(I = Lyp)xy — (I — Lyp)u,xy —uy > 0.

Therefore, we conclude that (noticing x,, = Poyn—1)

(zn, T — u)

;@n — Pcyn, Poyn—1 — Poyn)
+an (I = flzn, xn — u)
+(1 = ap)((I = S)u, zy, — u)

= <yn — Poyn, Zn> + an<(l - f)xnaxn - u>
+(1 — an){((I — S)u, z, — u).

\Y

Since z, — 0, oo, — 0 and {z,,} is bounded by as-
sumption which implies {y,,} is bounded, we obtain
from the above inequality that

limsup((I — S)u,z, —u) <0, Vu € ﬂ Fix(Ty).

Therefore, we have

lim sup((/ — S)u, zn, —u) <0, Vu € m Fix(Ty).

Jj—00 k—1
Since z,,; — Z € wy(7y), we obtain

lim sup(( — S)u, zy,

Jj—00

—u) = (I = S)u, T — u).

This implies that every weak cluster point £ €
vy Fliz(Ty,) of the sequence {x,, } solves the varia-
tional inequality

o
(I = S)u, & —u) <0, VYue ) Fix(Tk).
k=1
This is equivalent to its dual variational inequality
o
((I—8)&,&—u) <0, Yue[)Fix(Tp). (14)
k=1

Hence, we get wy,(z,,) C Q.

Step 4. 'We show that limsup,, ,. (I — f)z*, z,, —
x*) > 0.
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Since f is a contraction, the solution set of the
variational inequality (8) is a singleton. Let z* is the
unique solution of the variational inequality (8). Now
we take a subsequence {z,, } of {z,} satisfying

limsup((I — f)z*, z, — x¥)

n—oo
—z").

= lim (I — f)z*, zp,
k—oo
Without loss of generality, we may further assume that
Zn, — Z, then € Q. Therefore, noticing that z* is
the solution of the variational inequality (8), we have

lim Supn~>00<(l - f)l‘*, Tn — ZC*>

= (I - fla", 2 —a") (15)
> 0.
Step 5. We show that limsupn_,ooi@x* -
¥ xpe — ™) <0.
We note that

(Sz* — ™, xpy1 — x¥)
= (82" — 2", Tpt1 — P Pia(Ty) Tnt1)
+<SCC* - IL’*, PﬂiilFiw(Tk)an — x*>

Since P | pia(1,) Tnt1 € pey Fiz(Ty), by (2) we
have

(Sa* — 2%, Pnee  pia(n)Tn+1 —27) <0,
and by assumption (C3), we have
(Sx* —x*, xpy1 — ™)
< (82" — 2%, Tnp1 — P, Fia(Ty) Tnt1)
< |18z = 2| (|zns1 — P, pie(m) o |

= ||Sa* — «*|| Dist(wni1, [ | Fiz(Ty))
k=1

IN

1
S5 = 2%l ll#nss = Lo

‘We note that

||xn+1 - LnanrlH

< Hxn—i—l - Lnan + HLnfEn - Lnxn—‘rl”
< HPCyn - PCLnCCnH + HLnxn - Lnxn+1”
+H2n — Tng1l]-
Therefore, we get
1
7||xn+1 - Lnl'nJrlH
Qp
Bn
< ;Hanf(xn) + (1 - an)Smn - Lnfxn”

n
+& |Zn — Tpia | 0.
an Bn
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It follows that

1
limsup — (Sz* — 2", 241 — ") < 0.

(16)

n—oo Onp

Step 6. Finally, we prove that x,, — z* as n — oo.
From (7), we deduce that (noticing z,411 =

PC’yn)

IN A

IN

IN

| Tni1 — 2*|?

(Yn — @, xpy1 — %)

+(Peyn — Yn, Poyn — 27)

(Yn — 2%, g1 — 27)

(Bn (anf(zn) + (1 — an)Szn)

+(1 = Bn)Lnxy — ¥, Tpy1 — )
anﬁn<f($n) — & Tpy1 — x*>

+(1 — ap)Bn(Sxy — 2, xpy1 — z*)
+(1 = Bp){(Lnxy — ¥, 2py1 — )
B (f(2n) = f(2%), Tpy1 — 77)
+an B (f(x*) — 2", xpy1 — %)

+(1 — an)Bn(Szy — Sx™, 2p g1 — )
+(1 — an)Bn(Sx™ — 2", xpy1 — z¥)
+(1 = Bn){(Lnxy — 2", xpy1 — a¥)
00 Blln) — |l ns1 — 27
+anBn(f(x*) — 2, xpy1 — %)

+(1 = an)Bullzn — 2*||[|2ne1 — 27|
+(1 — an)Bn(Sx™ — 2", xpy1 — %)
+(1= B)llan — " 7ms1 — o7
(1= (1 — a)anBall2n — & 2ns1 — 27|
+o B (f(2") — 2%, 2y — 27)

+(1 — ap)Bn(Sx™ — 2", xpy1 — z¥)

— |2 _
1— (1 a)anb] |zn — 2*||” + ||Tpe1 —

2
+anﬁn<f($*) — ", Tn41 — x*>
+(1 — ap)Bn(Sx™ — ¥, xpy1 — ).

*H2

It turns out that

IN

IN

1 — 2|
1—(1—a)anbn
1+ (1 - O‘)O‘nﬁn
20 N .
+1+ (1 —a)anﬂn[an<f(x )—JJ yIn4l — X >
+(1 — o) (Sx™ — 2™, pp1 — )]
1 (1 - @) llzn — |
20 N .
+1+ (1 —a)anﬂn[an<f(x )—I’ yIn4l — & >
+(1 — o) (Sx™ — 2™, 2ppq — )]

lzn — 2|
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< 1= (1= @)anfa]en — 2"

1+ (foini?;anﬁn [<f(x*) - $*7$n+1 - x*>

1 * * *
+(1 — o) —(Sz™ — ¥, xpy1 — 7))
On

_l’_

Thus, from (15) and (16), we have lim sup,, ,[(1 —
1 * * * * *
o) o (ST — 2%, Tpgr — %) + (f(2¥) — 2%, Tng1 —
x*)] = 0. Therefor, we can apply Lemma 3 to above
last inequality to conclude that x,, — z* as n — oo.
In particular, if we take f = 0, variational in-
equality (8) is reduced to the inequality

zreQ, (2fx—2%)>0, ze€

This is equivalent to ||z*|| < ||z|| for all z € Q. It
implies that z* is the minimum norm element of €;
i.e., the minimum norm solution of hierarchical fixed

point problem (2). This completes the proof. O

Remark 8 We can choose the following parameters
satisfying conditions (C1) and (C2), for instance,

1 3 1 1
T 1> T 1 Wn = o—7-
(n+1)F " (mpi 2

Qp —

Remark 9 (1) The assumption (C3) was used in [30]
by Senter and Dotson so as to obtain a strong con-
vergence result for Mann iterates. Later Maiti and
Ghosh [31], Xu and Tan [32] studied the approxima-
tion of fixed points of a nonexpansive mapping T' by
Ishikawa iterates under the condition introduced in
[20] and point out that this assumption is weaker than
the requirement that the mapping is demi-compact.

(2) We would like to note that thanking to a re-
sult generated by Lemaire in [33], (C3) is in convex
minimization setting equivalent to

Ve e H, ¢(z)—ming > yDist(z, argmmgo)%

which is exactly one of the assumptions used in [3]
to obtain convergence results of a proximal method
for hierachical minimization problems. In [3], the
convergence results are valid in the finite dimensional
case.

Next, we introduce another explicit scheme in
which W-mapping in (3) is replaced by L,, defined
in (4) for finding the minimum norm solution of hier-
archical fixed point problem (2).

Theorem 10 Let C' be a nonempty bounded closed
convex subset of a real Hilbert space H. Let f :
C — H be a a-contraction with o« € [0,1), S :
C — C a nonexpansive mapping, and {T}}72, :
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C — C an infinite family of nonexpansive mapping
with ﬂZil FZ$(Tk) #* (0. Let L, = Zz:l %’:Tk,
Sn = Y pq Wk and wi > 0 with Y 2w, = 1.
Give xg € C, let {x,,} be a sequence generated by

anSxy + (1 — ap)LnPo
[an(an) + (1 - Bn)xn]an > 0.

If f =0, then (17) is reduced to the iterative scheme:

Tpil anSty, + (1 — o)Ly Po

[(1— Bp)xn],n > 0. (18)
Suppose the following conditions are satisfied
(Al) lim o, = lim g—" = lim %—2‘ =
n—oo 5 B n—oo n 1 1 n—oo 1 n
: n— Pn—1 _ :
nh_>nolo Oén/gn - nll_)rlgo Bin(a o Oén—l) -
lim ¥z =0;

n—oo anfn
[&.°]

(A2) > fn =00,
n=0

(A3) There exists some constant v > 0 such that
|z — Lnz|| > yDist(z, (2 Fiz(Tk)),
where Dist(z, o2, Fiz(Ty))
infyeﬂzoleix(Tk) |z —yll.

Then the sequence {x,} generated by (17) converges
strongly to x* € (| Fixz(T}) which is the unique
solution of the variational inequality:

e, ((I—-flz*,x—2%) >0, Ve (19
In particular, if we take f = 0, then the sequence
{x,} generated by (18) converges strongly to x* €
Nirey Fixz(Ty) which is the minimum norm solution
of hierarchical fixed point problem (2).

Proof: We will use six steps to complete the proof.

Step 1. We show that lim,,_, ||zp+1 — zp|| — 0.
Setting y,, = B f(zn)+ (1= By )xy, foralln > 0,
that is

Yn — Yn—-1 = Bn(f($n) - f(xnfl))
+(Bn - ﬂn—l)f(l'n—l)
+(1 = Bn)(Tn — Tn-1)
+(anl - Bn)l'nfl-

It follows that
lyn — yn-1ll < [1—(1—a)Bu]llon — zn-1]

+1Bn = Bl (I1f (wnall
Fllznall)-
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From (17), we have
Tn+1 — Tn
= apStn+ (1 — an)LyPoyn — an—15%n—1
_(1 - an—l)Ln—IPCyn—l
= an(Sxy — Szp_1) + (1 — an)(LnPoyn
_LnPCynfl) + (1 - O‘n)(LnPCynfl
—Ly—1Pcyn—1) + (o, — ap—1)Swp_1
+(an—1 — an)Ln—1Pcyn—1.
Then, we obtain

[Zn+1 — nl
< an”xn_xnfln +(1 _an)Hyn_ynle
+(1 - an)HLnPC’yn—l - Ln—lprn—IH

Hlom—1 = an|(|Szn1ll + | Ln—1Poyn—1])-

From theorem 7’s proof, we can get
”ancyn—l - Ln—lpcyn—ln < Mwna

where M is some constant such that

M > 1§ggn{(\\f(xn)\|+H5$nH),

(1Szp—1ll + [ Lnzn-1l), |l2n — 2p-1|l}-

Hence, we have

2| Ty 1|
w1 ’

[Zn+1 — nl

< -0 =a)Bp(l—an)]llzn — zp]
+1Bn = Brn = 1|([[ f(zn-1) + 2n-1])
Flom — ap—1|([|Szn-1ll + [ Ln-1Poyn-1])

+Mw,.
Therefore,
1 = 2l
Qn
(079
Bn — Bn-1
B = Bl 1) + 2ma )
Oln,
Qp — O
+M(stn—1” + | Ln—1Pcyn—1l|)
Qi
+Mwn
On
Qn—1
M
1-— 1—

(1= a)Ba(l = en) =5
X <1|1 - | + l2n = 2|
Bn an Qn—1 anfn
+ﬁn_ﬁn_1 + = )

B anfn
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Thus, from (Al), we have limsup,,_, (B% é —
1

et ‘ano;oé’:ll +ﬁ"al%’;_1 +52%-) = 0. Hence, ap-
plying Lemma 3 to above last inequality, we conclude

immediately that

g =l

0.
n—oo [07%
This implies that
lim [|zp41 — 25| = 0. (20)
n—o0

Step 2. We prove that wy(x,) C Fiz(L) =
Nrey Fiz(Ty).
From (17) and (20), we have
lim ||z, — Ly, Poyn| = 0. 21
n—oo
By (17), we get

[Yn — n|

H/Bn(f(xn) - xn)H (22)
0.

| Poyn — xn| <
_)

Notice that

|2n — Lay||
< ||$n_LnPCyn|| =+ HLnPC:Un_Ln:UnH
+L,x, — Lz, (23)
< Hxn - LnPCynH + HPC’yn - xn“
+Lyx, — Lz,

By (21)-(23) and Lemma 5, we get

lim ||z, — Lo = 0. (24)
n—o0

Since the sequence {z,} is bounded, there exists a
subsequence {z,,, } of {z,,} which converges weakly
to some £ € H. Therefore, we have = €
Fix(L) = (i, Fiz(T}) by (24) and Lemma 1.
Hence, wy,(zy,) C Fiz(L) = (o Fix(Ty).
Step 3. We claim that w,,(x,,) C Q.

Rewriting (17) as

Tpn — Tptr1 = ap(xn — Sxn) + (1 — an)(Poyn
_LnPCyn) + (1 - an)(yn - PCyn)
+(1 - O‘n)(xn - yn)a

that is
_ 1 —
I = (1 S)an+ ——"(Peya
(67% n
1l -«
_ancyn) + = (I - PC')yn
n
1—
Pl = an) - ) (1 Fan.
n
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Tn— xnl

Set z, =
have

and pick up v € (N;Z;. Then, we

(Zn, Tn — )
= (({ = 9)xn,x, —u)

+1—an

<Pcyn — Ly Poyn, n — u>

n

(I = Pe)yn, a0 — u)

Pl =) a‘ (1~ P,z — u)

Ty — (I = S)u, zy, — u)
l1-a

+((I = S)u,xp —u) +

n

( )u PC’yn - u>
1 <(I L )PCynaxn _PCyn>

1—oa,

+ a <(I_Pc)yn7xn_PCyn>
1—a,

+=—(T ~ Po)yn, Poyn — u)
Bn( B )

(I = flep, xn —u).

(879

Using the property of the projection(Lemma 2.2), we
have

(I = Pc)yn, Poyn —u) > 0.

Using monotonicity of I — W,, and I — S, we derive
that

(I =8)xn—I—-Su,x,—u) >0 and

<(I - Ln)PC’yn - (I - Ln)ua PC'yn - u> > 0.

At the same time, we observe that

Yn — LnPoyn

= Buf(xn) + (1 = Bn)zn — LnPoyn

= Bulf(zn) — zng1] + (1 = Bo) (@0 — Tnt1)
+xnt1 — LnPoyn

= Bulf(zn) — 1] + (1 = Bn) (@0 — Tpt1)
+an (Szy — Ly Poyn).

Therefore,

(2n, Tn — u)
> (I —-9Su,x, —u)

l—«a
= <(I - Ln)PC'yn’xn - PCyn>

Qn

11—«

+ n<(I_PC’)ynaxn_PCyn>

Qn
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+Bn(1a o) ((I = f)an, Tn — u)
= ((I - S)u,z, —u)
1—a,
+ (Yn — LnPcyn, tn — Poyn)
ﬁn(la— o) (I = flon, xy —u)
= (I - S)u,z, —u)
=00 1) 11, 0 = Pyl

(1= o) (1= ) (P — Py

n

(1 - an)<an — Lo Poyn, vn — PCyn>
/Bn( )<(I [, xn — u).

n

— 0, 22— 0, Z22Entl 0 and (2,
Poyn) — 0, we obtam from the above inequality that

But, since z,, —

o0
u) <0, u€ () Fix(Ty).
k=1

limsup((I — S)u, x, —

n—oo

Therefore,

limsup((/ — S)u, zp, —u) <0, u€ ﬂ Fizx(Ty).

J—o0 k=1
Since Tp; — T, we have
limsup((/ — S)u, xn; —u) = (I — S)u, T — u).

Jj—00

This implies that every weak cluster point = €
Ny Fiz(T}) of the sequence {x, } solves the varia-
tional inequality

(I —=8S)u,z—u) <0, Yue ﬁ Fizx(Ty).
k=1

This is equivalent to its dual variational inequality

(I—8)&,&—u) <0, Vue ﬁ Fiz(Ty).
k=1

Hence, we get wy,(z,,) C Q.

Step 4. 'We show that limsup,, ,. (I — f)z*,z,, —
x*) > 0.

Since f is a contraction, the solution set of the
variational inequality (19) is a singleton. Let z* is
the unique solution of the variational inequality (19).
Now we take a subsequence {x,, } of {x,} satisfying

limsup(({ — f)z*, z, — =*)

n—o0

= lim (I — f)z*, x,, —2¥).
k—o0
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Without loss of generality, we may further assume that
Zn, — Z,then T € Q. Therefore, noticing that z* is
the solution of the variational inequality (19), we have

limsup,, ,oo((I — f)z*, z, — x*)
(I - flz*,z—a*) (25)
0.

vl

Step 5. We show that limsup,, ., 3*(Sz" —
¥ xpg1 —x*) <0.
We note that

(Sx™ —a™, xpy1 — )
(Sz* — 2%, Tpt1 — Ppe | pia(y) Tnt1)
(82" — 2, P pia(1y)Tnt1 — 7).

Since P | pia(1y,) Tnt1 € Npey Fiz(Tk), by (2) we
have

(Sa* — 2%, Pnee  pia(n)Tn+1 —27) <0,
and by assumption (A3), we have

(Sx* —x*, xpy1 — ™)

< (Se¥ -2t wpg — Pﬂ;"lem(Tk)wnH)
< 152" = 27| lznt1 = Py, Fia(moy Tt
o0
= ||Sa* — &*|| Dist(wni1, [ | Fiz(Ty))
k=1
1 * *
< ;HSfU — &"[| lznt1 — Ln@nia |-

‘We note that

| Zn+1 — Lnzpti|

< |@nt1 — LnPoynll + ([ LnPoyn — Lyay||
| Lnxn — LnZpt |

< an|Szy — Ly Poynll + |yn — o4
Hznt1 — znl

< an|Szy — Lo Poynll + Bull f(zn) — 24|

Hlznt1 — zal-

Therefore, we have

o
Fn|‘xn+1 - annJrIH
n
az,
< FSw — Lo Poyull + anll f(2n) — 24|
n
_'_047721 [Zn — Tna|
Bn (079
— 0.
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It follows that

lim sup %<Sx* — 2" X1 —2) <0. (26)

n—0o0 ﬂn

Step 6. We prove that x,, — z* as n — oco. From
(17), we have

Tnt1 — 2" = ap(Szy — S2™)+ (1 — ap)(LnPoyn
—x%) 4+ ap (Sz* — x¥).

Thus, we have

[z — 2|2

< lan(Szy — Sz*) + (1 — an)(LaPoyn — z*)|
+200, (ST, — %, Ty — )

< apl|Sz, — Sz*|2 + (1 — )| LnPoyn — *?
+200(STp — ¥, Ty — TF)

< aonn - 33'*H2 + (1 - O‘N)Hyn - x*HZ

+2a, (Szy — ¥, g1 — ).
(27)
At the same time, we observe that

[yn — 2*|?

= Q= Bp)(@n —2%) + Bu(f(zn) — f(27))
+Bn(f(a*) — *)|?

< Q= Ba)(@n — 2%) + Ba(f@a) = f(2*)]?
+26n(f(2%) — 2, yn — )

< (1-B)llwn — QT*HQ + Bl f(zn) — f(w*)HQ
+26p(f(2%) — 2, yn — )

< (1-B)llwn — w*HQ + 5na2Hxn - x*H2
+2Bn<f(x*) — T, Yn — $*>

= [1-(1-a®)Bllzn —
+2B,(f(x*) — 2%, yn — 2%).

(28)
Substituting (28) into (27), we have

| Tns1 — x*H2

< apllz, - 37*||2
+(1 —ay)[1 - (1 - az)ﬂn]”xn - x*HQ
+2Bn(1 - an)<f($*) — 2", Yp — $*>
+2a, (Sx* — o, xpy1 — z¥)

= [1—(1=0a?)Bu(1 = ap)lllzs — ="
+2B8n(1 — o) (f(2") — 2%, yn — 27)
+2a, (Sz* — ¥, xp1 — )

= [1-(1- 042)511(1 —ap)||lzn — x*HZ
+(1 = a?)Ba(1 — )

| oz (f(z") — 2%, yn — 27)

Qn

T e f (577 — 2" T —a7) ).

(29)
Therefore, we can apply Lemma 3 to (29) to conclude
that x,, — x* as n — oo. This completes the proof.
a
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